

Intensité de l'exercice en 2021: les nouvelles recommandations

Marie Christine Iliou
Service de Réadaptation et Prévention Secondaire.
Corentin Celton. APHP Centre

Conflits d'intérêts

Pas de conflits d'intérêt avec cette présentation

Conflits d'intérêt des 5 dernières années

- Astra Zeneca
- Novartis
- Sanofi
- Servier
- We Health

Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: why and how: a position statement from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology

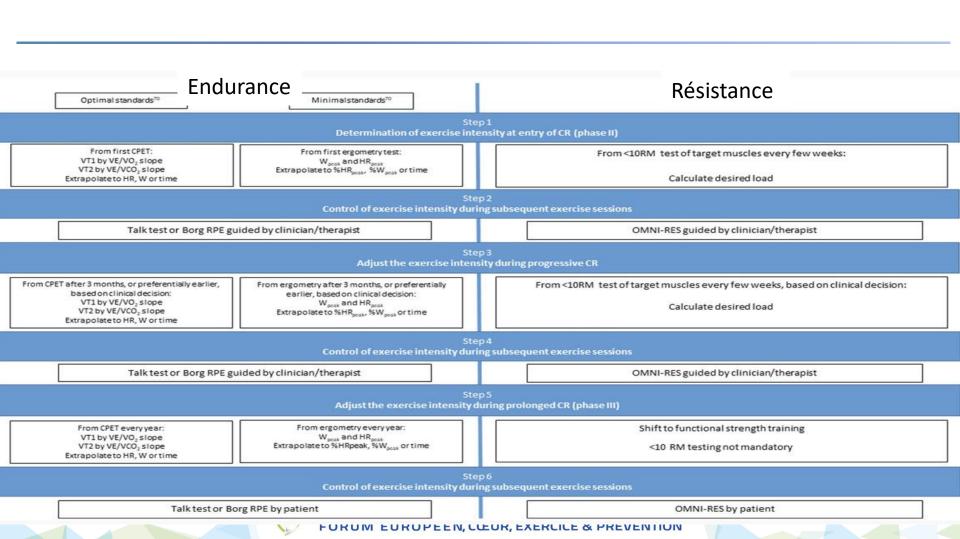
Dominique Hansen^{1,2}*, Ana Abreu³, Marco Ambrosetti ⁶

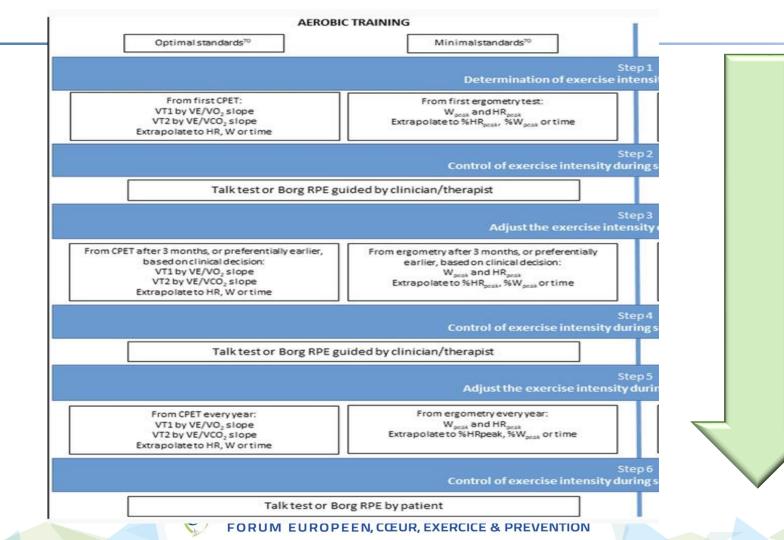
Classification of aerobic exercise intensity 17

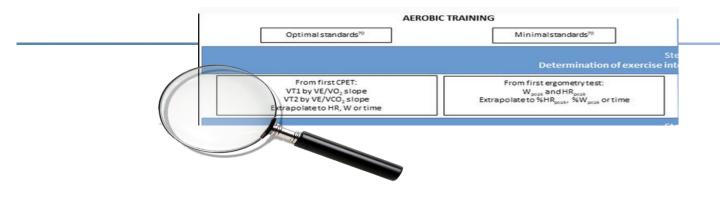
Very high intense exercise

F requence
I ntensité
T ype
T ime (Durée)

Aerobic + lactate + anaerobic


Intensity	VO ₂ max (%)	HRmax (%)	HRR (%)	RPE scale	Training zone
	VO ₂ max (%)				
Low intensity, light exercise	<40	<55	<40	10-11	Aerobic
Moderate intensity exercise	40-69	55-74	40-69	12-13	Aerobic
High intensity	70-85	75-90	70-85	14-16	Aerobic + lactate


>85


>85

>90

17 - 19

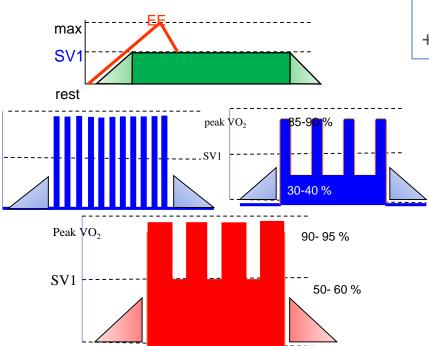
AEROBIC TRAINING

Optimal standards⁷⁰

Minimalstandards⁷⁰

Determination of exercise i

From first CPET: VT1 by VE/VO₂ slope VT2 by VE/VCO₂ slope Extrapolate to HR, W or time From first ergometry test: W_{peak} and HR_{peak} Extrapolate to $%HR_{peak}$, $%W_{peak}$ or time

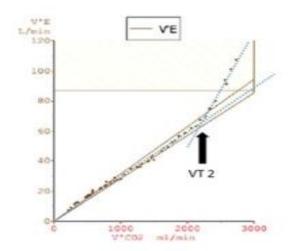


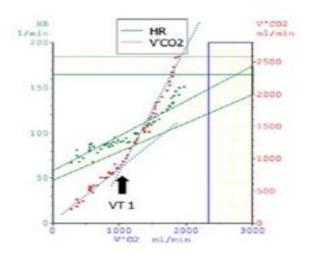
Endurance

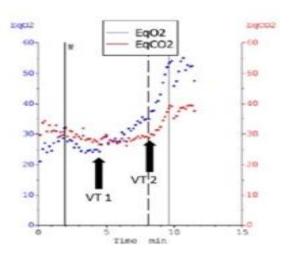
Continu

Interval

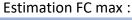
HIIT




+ 10 % dépense énergétique


+ 1 ml/kg/min capacités effort

3 -6 js /semaine Modéré à intense



STEP 3:

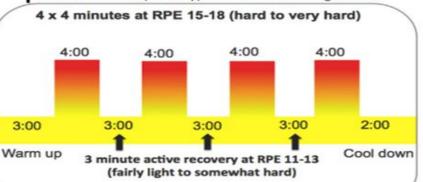
Measure or Estimate HRmax STEP 1:

From maximal exercise test or prediction equation

Sans β - : 211-(0,64 x age) Avec β - : 164- (0,7 x age)

Calculate HR target zone STEP 2:

Establish zone from 85 to 95% HRmax



Validate HR target zone during exercise training Start 4-minute high intensity interval at RPE 15 (Hard)

> Finish high intensity interval at RPE 17-18 (Very Hard) Check HR throughout using HR monitor

For the first high intensity interval, allow the entire 4-minute period to reach the HR target zone. For subsequent high intensity intervals (i.e. 2nd, 3rd, and 4th),

allow 2-minutes (halfway) to reach the HR target zone.

Début des 4 min a Borg 15 jusqu'à 17-18 Vérifier FC est dans zone désirée Récupération à Borg 11-13 Pour suivants se donner 2 min pour atteindre la zone de FC

Validated HR target zone STEP 4A:

If HR remains in target HR zone during validation.

30 minutes per session

OR if there is an indication of inaccurate HR target zone arises, go to Step 4B.

Taylor I. Prog Cardiovasc Diseas (2019) 62 140–146

Indications of an inaccurate HR target zone Exercising HR is close to or above HRmax (from STEP 1) Exercising HR is below target HR zone but RPE is 15-18. Calibration of HR target zone Repeat maximal exercise test and recalculate HR target zone, OR Estimate new HRmax and recalculate HR target zone,

Use RPE to guide intensity

Si FC inadaptée:

- FC proche de FC max
- FC en dessous de zone FC avec Borg > 15
 Causes :
- EE n'atteint pas FC max
- Medicaments (β-)

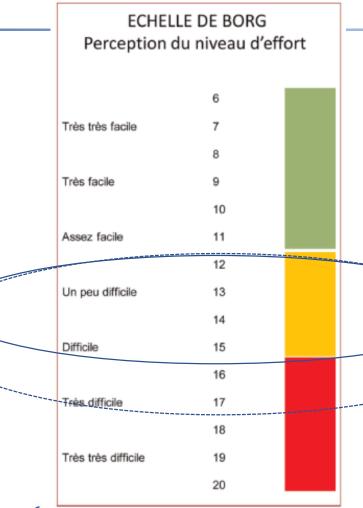
Re-calibration de zone de FC éventuellement en refaisant EE Ou travailler uniquement en Borg

Benefits and Risks of High-Intensity Interval Training in Patients With Coronary Artery Disease

John C. Quindry, PhD^{a,b,*}, Barry A. Franklin, PhD^{c,d}, Matthew Chapman, MS^b, Reed Humphrey, PhD^e, and Susan Mathis, MS^b

(Am J Cardiol 2019;123:1370–1377)

HIIT = MICT	HIIT > MICT	HIIT < MICT	
 Resting HR Resting/Exercise BP Body composition Blood glucose control Blood lipid modification 	VO₂max Sub-maximal exercise performance Cardiac performance (possibly)	Unsupervised exercise adherence	


Safety?

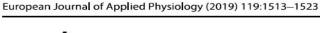
Le match continue ...

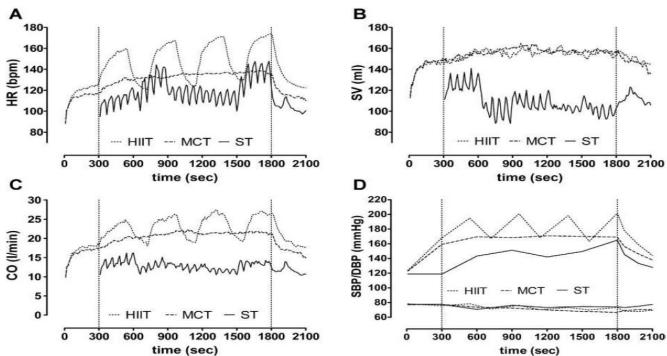
Progression

Augmentation durée et intensité 5 à 10 %/ semaine

Take home messages

Intensités de entraînement aérobie doit optimiser la dépense énergétique (par intensité, durée)


Utilisation des seuils (VT et VT2) pour la détermination de l'intensité est préférable aux autres modalités


La sélection de l'intensité doit être décidée avec le patient après discussion et explications

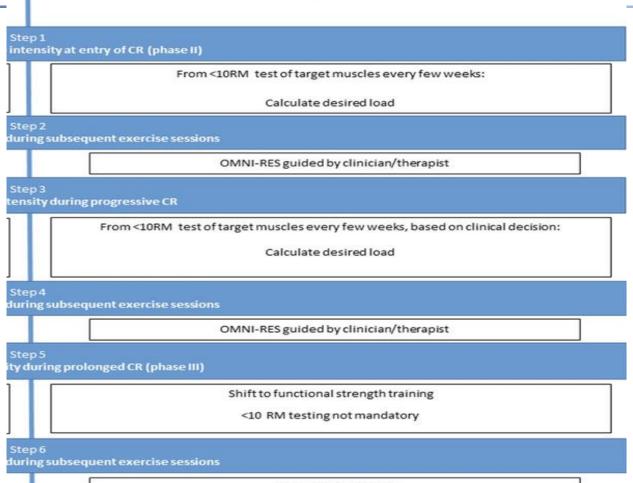
L'echelle de Borg peut être utilisée en alternative et pour suivre l'entraînement

Progression : ajustement du temps d'exercice avant l'intensité, réévaluation des capacités pour ajuster l'entraînement

Résistance

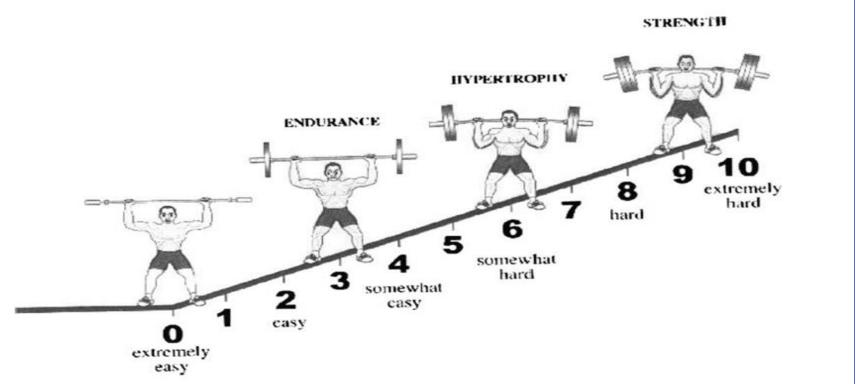
Fréquence : 3/ semaine

Personnalisation



- 30 à 70 % 1-RM membres sup
- 40 à 80 % 1-RM membres inf

- 12 à 15 répétitions



STRENGTH TRAINING

OMNI-RES by patient

OMNI-RES

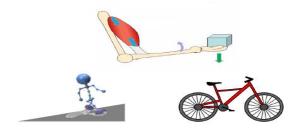
Progression

Résistance « basique »	Résistance « fonctionnelle »		
Générique	Spécifique		
Assis/ couché	Debout		
Une articulation	Plusieurs articulations		
Mouvement dans 1 dimension	Mouvements ds 3 dimensions		
Mouvements lents	Mouvements rapides		
Base stable	Base instable		
Unilatéral	Bilatéral		
Simultané	Alternant		

Take home messages

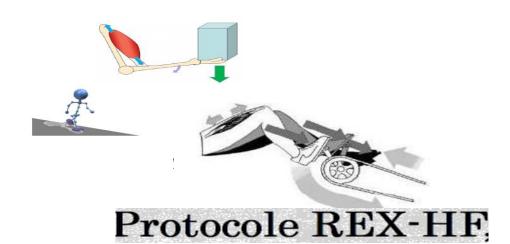
Hautes intensités de la résistance dynamique > faibles intensités

Quand protocole de haute intensité en résistance est bien adapté celui-ci est tout aussi sûr qu'à faibles intensités


La sélection de l'intensité doit être décidée avec le patient après discussion et explications

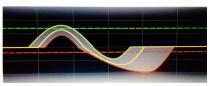
La prescription doit être basée sur la détermination due la RM, et prescrite à <10 RM pour les charges initiales , OMNI-RES peut être utilisé pour suivre l'entraînement

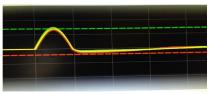
Progression: n répétitions, intensité and temps de repos doivent être ajustés



Concentrique

Excentrique


- + contraintes mécaniques et musculaires
- contraintes métaboliques et cardiorespiratoires



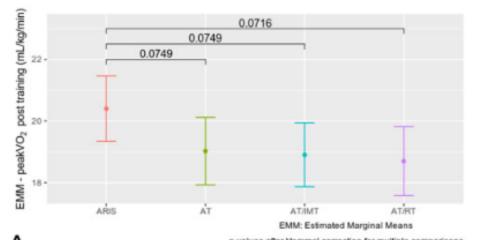
Résistance concentrique/ excentrique

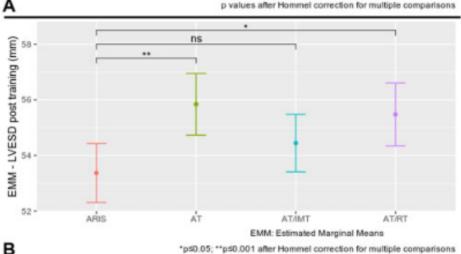
Inspiratory muscle training

Comment?

20-30 min/sess, 2-3/ week Start at 30% PI max Readjust intensity every 7-10 days up to 60%

Threshold Inspiratory Muscle Trainer®, Power Breathe®, Trainair®





Combined aerobic/resistance/inspiratory muscle training as the 'optimum' exercise programme for patients with chronic heart failure: ARISTOS-HF randomized clinical trial

Ioannis D. Laoutaris¹*, Ewa Piotrowicz², Manolis S. Kallistratos³, Athanasios Dritsas¹, Niki Dimaki³, Dimitris Miliopoulos¹, Maria Andriopoulou³, Athanasios J. Manolis³, Maurizio Volterrani⁴, Massimo F. Piepoli⁵, Andrew J.S. Coats⁴, and Stamatis Adamopoulos¹; ARISTOS-HF trial (Aerobic, Resistance, InSpiratory Training OutcomeS in Heart Failure) Investigators

- ARIS: 30 min AT + 10 min RT + 20 min IMT
- AT: 30 min AT + 30 min gym
- AT/IMT: 30 min AT +30 min IMT
- AT/RT: 30 min AT+ RT 30 min

*p≤0.05; **p≤0.001 after Hommel correction for multiple comparisons

Conclusions

La prescription de l'entraînement doit être adaptée et personnalisée à chaque patient

Progression de celui-ci est essentielle

Réévaluations régulières

Multimodale +++

Sert d'éducation au patient -> observance à long terme

